三界文学阁

手机浏览器扫描二维码访问

第六百三十四章 陈氏类(第1页)

我们的最后两片拼图,陈氏类和黎奇曲率,是彼此相关的,它们是源自于几何学家尝试将黎曼面从复一维推广到多维,并从数学上刻画这些推广结果之间差别的努力。

这把我们带到一个重要定理:高斯—博内定理,它适用于紧致黎曼曲面,以及其他任何无边界的紧致曲面。

“边界”在拓扑中的定义很直观:圆盘是有边界的,亦即有明确界定的边缘,而球面则没有。在球面上,不管你朝哪个方向走,而且不管走多远,都不会碰到或接近任何边缘。

这个定理是在19世纪时由高斯和法国数学家博内(PierreBonnet)所提出的,它建立了曲面的几何性质及其拓扑性质之间的关系。

高斯—博内公式是说,上述曲面的总高斯曲率(或高斯曲率的积分)等于2π乘以该曲面的“欧拉示性数”(Eulercharacteristic)。而欧拉示性数χ(希腊字母chi)则又等于2-2g,其中g是曲面的亏格(也就是曲面的“洞”数或“把手”数)。举例来说,二维球面没有洞,所以它的欧拉示性数是2。在此之前,欧拉提出了另一条求任何多面体欧拉示性数的公式:χ=V-E+F,其中V是顶点数,E是边数,F是面数。以四面体为例,χ=4-6+4=2,与球面的χ值相同。一个立方体有8个顶点、12个边和6个面,所以χ=8-12+6=2,再次和球面相同。因为欧拉示性数只和物体的拓扑,而非几何形状有关,那么这些几何相异,但拓扑相同的物体有着相同的χ值当然很合理。欧拉示性数χ是空间的第一个主要的“拓扑不变量”,也就是在拓扑等价但外观可能极为不同的各个空间上(例如球面、四面体和立方体),都能维持不变的性质。再回到高斯—博内公式。由此,二维球面的总高斯曲率是2π×2=4π。至于二维环面,因为它的χ是0(2-2g=2-2=0),所以环面的总高斯曲率是0。把高斯—博内的原理推广到更高维,就会把我们带到陈氏类。

一个可赋向(或是有两面)的曲面,拓扑上可由其欧拉示性数来描述。计算多面体的欧拉示性数有一条简单的公式(多面体即是由平坦的面和直线的边所构成的形体)。欧拉示性数χ等于顶点数减边数,再加上面数。对于本图所示的长方体,其值为2。四面体的欧拉示性数也是2(=4-6+4),四角锥也同样是2(=5-8+5)。因为这些物体都是拓扑等价的,所以它们理所当然有着相同的欧拉示性数2

陈氏类是由我的指导老师陈省身所发展的理论,是一种在数学上刻画不同复流形的概略方法。简单来说,如果两个流形的陈氏类不同,它们就不可能相同;反之却不一定成立:两个不同的流形可能具有相同的陈氏类。

复一维的黎曼面只有一个陈氏类,即第一陈氏类,而对于这个情况,正好等于欧拉示性数。一个流形的陈氏类数目,视其维数而定,例如复二维的流形具有第一和第二陈氏类。至于弦论所关心的复三维(或实六维)流形,则有三个陈氏类。它的第一陈氏类为六维空间中的实二维子空间(子流形)各对应到一整数,其中所谓子空间是原空间的一部分形体,就像纸张(二维)可以摆在办公室(三维)里一样。类似地,第二陈氏类为空间中的实四维子流形各对应一整数。第二陈氏类则为这个复三维(或实六维)的流形本身指定一个数字,也就是欧拉示性数χ。事实上,对于任何复n维的流形,它的最后一个,亦即第n个陈氏类必定对应到流形的欧拉示性数。

但陈氏类究竟告诉了我们什么?或者说,指定这些数字的目的何在?其实这些数对于子流形本身并没提供多少信息,但是对于整个流形,它们却透露出许多重要的讯息。这在拓扑学是很常见的:当要了解复杂、高维的物体结构时,我们经常检视此物体中的子物体的数目和类型。

打个比方,假设你给身在美国的每个人都编上不同编号。那么,为个人指定的数字丝毫无助于理解他或她本人,但若把这些数字汇总起来,就可以呈现出更大的“物体”——美国本身——的重要情报,例如人口规模、人口成长率等。

我们还可以再举一个具体实例,来解释这个相当抽象的概念。让我们依照惯例,从很简单的物体开始。球面是一个复一维或实二维的曲面,它只有一个陈氏类,在这个情况等于欧拉示性数。回想一下,我们在第2章讨论过,居住在球形行星上时,关于气象学和流体力学的一些影响。例如风有没有可能在地表上的每一点都是由西向东吹?在赤道以及赤道之外的任何纬度线,都很容易想象风如何向东吹。但是在南极和北极的极点(这两点可以被视为奇点),却根本没有风,这是球面几何的必然结果。对于这种有着明显例外的特殊点的曲面,它的第一陈氏类不等于零。

第一陈氏类(对于本图中的二维曲面来说,正好等于欧拉示性数)与向量场中流动停滞的地方有关。在像地球的球面上,我们可以看到两个这样的点。如果流动是从北极往南极流(左上图),在两个极点上,所有表示流动的向量会彼此抵消,因此净流动为零。同理,如果流动是由西向东(右上图)还是会有两个根本没有流动的停滞点,同样又是出现在北极点和南极点,因为在此根本没有西向、东向可言。如果是环面,情形就不同了。在此,流动可以是铅直的(左下图)或水平的(右下图),都不会遇到停滞点。由于环面上的流动没有奇点,所以它的第一陈氏类是零,而球面的则不是零。

喜欢数学心请大家收藏:()数学心

末世后我成了疯批alpha们的安抚剂  兽世养山君[种田]  枭鸢  夸夸我的神探祖父穿越爹  怪物崽崽和他的怪物监护人  还是修仙吧  杀了那个妖鬼  新搬来的邻居  第三十年明月夜  我在死亡副本当管理员  我真没想在过去的年代当学霸  死神不来了  撩惹疯批顶E,笨蛋少爷他逃了  攻略对象变成室友后,他不对劲  小仓鼠今天有猫了吗  穿到虫族和军雌相亲  君为客  神魔剑玄录  迷津蝴蝶  上流假象  

热门小说推荐
调教薄情小女人:独家霸道爱

调教薄情小女人:独家霸道爱

关于调教薄情小女人独家霸道爱来,让我验验货,看看你够不够正!她看着眼前盯着她胸口的妖孽总裁,脸色刷地变得惨白。为了二百万,那一夜,她顺从了多年后,她带着酷似他的小小翻版,一张支票甩到他面前我买你一夜,多少钱,你随便填!紧急关头,他却抓住了她天大的秘密...

这个仙人有点猛

这个仙人有点猛

穿越之后,黄枫发现这个世界有点乱,朝堂不靠谱,仙门不着调,妖四处作妖,鬼到处惹事,如此严重的安全隐患一下就激发了他的火力不足恐惧症他是一个不喜欢凑热闹也不爱管闲事的人,只想舒舒服服过生活,可许久之后他发现,热闹他好像都凑了,闲事他似乎都管了,而且大家都很听他的话黄枫你们有意见就提,我又不是不讲道理的人!妖鬼仙凡不不不,你说得都对!功法覆盖范围之内,皆是真理!如果您喜欢这个仙人有点猛,别忘记分享给朋友...

重生我不是影后

重生我不是影后

红袖读书首届全球征文大赛参赛作品如果您喜欢重生我不是影后,别忘记分享给朋友...

全民轮回只有我开了挂

全民轮回只有我开了挂

关于全民轮回只有我开了挂原创诸天,热血搞笑李耀穿越传到一个全民轮回的世界,主世界中伴生了无数的小世界。这些小世界中分为了武侠玄幻鬼怪妖物仙侠悬疑等数十种分类。更神奇的是,主世界的...

幸孕婚宠总裁爹地超凶猛

幸孕婚宠总裁爹地超凶猛

关于幸孕婚宠总裁爹地超凶猛盛传厉氏的总裁高富帅占了两样,缺的那一‘帅’是因为他太丑,不敢示人。没想到身边多了一个女人后,厉总裁的喜好彻底变了。每天都要牵着小女人的手逛逛街,看看电影。必要时伸手掐断小女人身后的一朵朵桃花,乐此而不彼。那时人们才知道,厉少一点也不丑,那个小女人是上辈子修来的福气捡了个宝。爹地,我帮你搞定妈咪的奖励呢?厉凌烨微微一笑,等我睡服你妈咪再说。小不点撇撇小嘴,当晚就把妈咪拉到了自己的小床上。...

八零花月正当风

八零花月正当风

关于八零花月正当风死过一次,赵零夏才知道自己身边谁是人谁是鬼。重活一世,还不想让她好过,那就别怪她辣手摧渣。只是那个谁,我们真的不熟。某人表示我凭实力勾搭,咳咳…娶回来的媳妇,就愿意宠着你有意见?赵零夏你再乱来我可要上税了。贺连祁媳妇你说的没错,我这不正在上税吗。...

每日热搜小说推荐