三界文学阁

手机浏览器扫描二维码访问

第六百五十四章 severi猜想(第1页)

弦论必须是十维的理由十分复杂,

主要的想法大致如下:

维度愈大,弦可以振动的方式愈多。

但为了制造出宇宙中的所有可能性,

弦论不只需要大数目的可能振动模式,

而且这个数目还必须是特定的数,

结果这个数只有十维时空才办得到。

寻找钻石的时候,幸运的话,你可能附带找到其他的宝石。我在1977年发表的一篇两页论文里,宣告完成了卡拉比猜想的证明。详细的证明则发表在1978年的73页论文中,在这篇文章里,我附带证明了另外五个相关的定理。

总而言之,这些意外的收获,其实源自我思索卡拉比猜想时的非常境遇:我先是想证明他的猜想是错的,后来又掉头,试图证明它是对的。非常幸运,我所有努力都没有白费,每一着错步,每条看似不通的死路,后来都被我用上了。我号称的“反例”(从卡拉比猜想导出的结论,我想证明它们是错的),因为卡拉比猜想的成立,结果连带也是正确的。因此这些失败的反例,事实上是正确的典例,很快都成了数学定理,其中有些还颇为着名呢。

这些定理中最重要的一项,又带领我们推导出“赛佛利猜想”(Severiconjecture),这是庞加莱猜想的复数版本,数学家有二十多年无法证明其对或错。

其中对小于零的情形,其简单的推论就解决了长期悬而未决的Severi猜想,复二维投影空间的复结构是唯一的,甚至任意维数复投影空间的卡勒复结构也是唯一的。

另一个匪夷所思的推论是,在任意维数的这类复流形上,存在一个奇妙的陈示性数不等式,而此前代数几何学家却只能得到复二维的情形。

不过在进行这项证明之前,我得先证明一个关于复曲面拓扑分类的重要不等式。我之所以对这个不等式感兴趣,部分原因是听到哈佛大学数学家曼弗德(DavidMumford)的演讲,他当时正路过加州。这个问题是荷兰雷登大学的安东尼斯·凡德文(AntoniusvandeVen)首先提出的,讨论关于凯勒流形陈式类的不等式,凡德文证明:凯勒流形第二陈氏类的8倍,不小于其第一陈氏类的平方。当时许多人相信将不等式中的8换成3,将会得到更强的不等式,事实上,大家认为3是可能的最佳值。曼弗德问的,就是能不能证明这个更严格的不等式。

这个问题是1976年9月曼弗德在加州大学尔湾分校演讲时提出的,当时刚证明卡拉比猜想的我,正好听了这场演讲。他演讲到中途,我就相当确定曾经遇过相同的问题。在演讲之后的讨论中,我告诉曼弗德自己应该可以证明这个更困难的不等式。当天回家后,我检查做过的计算,果然不出所料,自己曾经在1973年试图用这个不等式来否证卡拉比猜想。而现在,我可以倒过来,用卡拉比—丘定理来证明这个不等式。事实上我的收获更丰盛,因为运用其中的特殊情况,也就是一个“等式”——即第二陈氏类的3倍“等于”第一陈氏类的平方——来证明了赛佛利猜想。

赛佛利猜想与这个应用范围更广的不等式[有些时候被称为“波格莫洛夫—宫冈—丘不等式”(Bogomolov-Miyaoka-Yauinequality),以表彰另两位数学家的贡献]是卡拉比证明最初的主要副产品,此后还有其他应用接踵而至。

事实上,卡拉比猜想涵盖的范围比我之前提到的更宽广,其中不只包含黎奇曲率为零的情况,也包括黎奇曲率为正常数与负常数的情形。

到目前为止,还没有人能证明出正常数条件中最普遍的情况。事实上,正常数的情形,卡拉比原先的猜想并不成立,后来我提出一个新猜想,加上某个容许正常数黎奇曲率度规存在的特殊条件。

过去二十年,许多数学家(包括多纳森)对这个猜想都有相当重要的贡献,但仍未能完全将它证明。虽然如此,我倒是证明了负曲率的情况,这是我整体论证的一环,法国数学家奥邦也独立证明了这个部分。

负曲率的解决,则证实了存在着一类涵盖更广的流形,称为凯勒—爱因斯坦流形(Khler-Einsteinmanifolds)。这门新建立的几何学,后来有出人意料的丰硕研究成果。

在思索卡拉比猜想的直接应用上,我可说是诸事顺遂,在短期间内解决了六七个问题。

事实上一旦你知道存在某个度规,就会顺势得到许多结果。

例如你可以反过来导出流形的拓扑性质,并不需要知道度规的确切表式。然后,又可以运用这些性质去指认出流形的唯一特色。

这就好像你不需要知道星系中众星体的细节,就能辨识星系;或者,不需要知道整副牌的细节,就能推理出许多手中牌张的性质(牌数、大小、花色等)。

对我来说,这就是数学的神奇之处,比起巨细靡遗的细节齐备之后才能做推论,这样反而更能彰显数学的威力。

见到我艰苦的努力终于获得回报,或者看着他人继续向我没想到的路径迈进,都让我觉得心满意足。但尽管拥有这些好运道,还是有个想法不时在心头扯咬着我。在我内心深处,我很确定这项研究除了数学之外,在物理学中也一定有其意义,虽然我并不知道究竟为何。就某个观点而言,这个信念其实十分显然,因为在卡拉比猜想中求解的微分方程(黎奇曲率为零的情况),基本上就是真空的爱因斯坦方程,对应到的是没有背景能量或宇宙常数为零的宇宙(目前,一般认为宇宙常数是正值,和推动宇宙扩张的暗能量同义)。而卡拉比—丘流形就是爱因斯坦方程的解,就像单位圆是x2+y2=1的解一样。

当然,描述卡拉比—丘空间比圆需要更多的方程式,而且方程式本身也复杂得多,但是基本想法是相同的。卡拉比—丘方程不但满足爱因斯坦方程,而且形式格外优雅,至少我觉得有令人忘形之美。所以我认为它在物理学中必定占据着某个重要位置,只是不知道究竟在哪儿。

喜欢数学心请大家收藏:()数学心

我真没想在过去的年代当学霸  上流假象  小仓鼠今天有猫了吗  攻略对象变成室友后,他不对劲  迷津蝴蝶  怪物崽崽和他的怪物监护人  第三十年明月夜  末世后我成了疯批alpha们的安抚剂  杀了那个妖鬼  夸夸我的神探祖父穿越爹  还是修仙吧  君为客  新搬来的邻居  死神不来了  神魔剑玄录  撩惹疯批顶E,笨蛋少爷他逃了  穿到虫族和军雌相亲  兽世养山君[种田]  我在死亡副本当管理员  枭鸢  

热门小说推荐
腹黑竹马:小青梅,吃不够!

腹黑竹马:小青梅,吃不够!

乖,给我。不要!这是原则问题!某吃货少女抱着一大堆零食誓死不从。他唇角带笑我做了二十八道菜。她冷静的上缴所有零食,嗲声嗲气亲爱的!你比零食重要!他是冷面的腹黑总裁,运筹帷幄决胜千里,但这都不重要!重要的是,他厨艺技能满点,追妻路上拿着锅铲遥遥领先。而把他改造成这样的小丫头采访中,她郑重其事我要吃一吨小龙虾!记者???跟谁说…如果您喜欢腹黑竹马小青梅,吃不够!,别忘记分享给朋友...

她真的太香了

她真的太香了

很小很小的时候,林塘就从亲在脸上的那些漂亮姐姐的口水中知道,英俊将会是自己此生最大的麻烦之源但是,作为一个志在世界冠军的男人,他眼里只有召唤师奖杯,他的战场也只在召唤师峡谷!女人只会影响我的操作!再多再漂亮的女粉丝,都无法令他多眨一下眼睛。然而竟然会有人为了追星,脑瘫到把整个俱乐部买下来我林塘就算从俱乐部楼顶跳下去!就算从此被封杀,再也上不了赛场!也绝对不会对你说一句软话!一年后不是我真香是她真的太香了如果您喜欢她真的太香了,别忘记分享给朋友...

梦幻西游大主播

梦幻西游大主播

叶健是一位普通的梦幻西游玩家,在穿越后,他发现原本的将军令竟然变成了一个神奇的U盘!打书炼妖资源鉴定,这些搏几率的玩意,担架还是逆袭统统由他说了算!晚秋半夏冥想…这些CC的万人主播,都将是他的跟班小弟!全订水友群582451872...

皇上隆恩浩荡

皇上隆恩浩荡

大计第一步,得找个金大腿,可没曾想抱错了,扎脸,可否重抱?为何她重新抱谁,谁就倒了八辈子血霉?好吧,她认,反正她有二宝。一,读心术,虽然,独独对卞惊寒失灵。二,缩骨术,虽然,让本是成人的她看起来像个小孩。在三王府众人的眼里,他们的王爷卞惊寒也有二宝。一,竖着走的聂弦音。二,横着走的聂弦音。有人问聂弦音,三王爷对你如此好,你要怎么报答他?聂弦音认真想了想我会把他当成我亲爹一样侍奉!直到那一日,有人当着他的面,跟她说,等她长大了娶她,她点头如捣蒜,卞惊寒便彻底撕破了脸,也撕了她的衣。她哭得惊天动地你禽兽,我还是个孩子。某男淡定穿衣,唇角一抹餍足微弧比本王小两岁,的确算个孩子。...

这个王妃太魔性

这个王妃太魔性

一名外科医生魂穿异世大陆,身怀血魔珠,成为人人得而诛之的天魔女,将来注定成为魔尊的人,救了六界第一美男的师父,得魔尊长老伏辰的倾心相待,更收获了凌王墨南枫的一世痴情。如果您喜欢这个王妃太魔性,别忘记分享给朋友...

郝冬冬今天好好做人了吗

郝冬冬今天好好做人了吗

习惯了当大爷的郝冬冬谁也不服,更别提当谁的小跟班,直到遇见谷庭西郝冬冬,你再逃课,期末别想及格。郝冬冬,带书过来,我给你答疑。郝冬冬,明天早上六点半,请把早餐放在我的办公桌上。郝冬冬,你属树懒的吗?跟上,再磨蹭民政局该下班了。对于这个男人,郝冬冬只想悲愤地说一个字喳!大概,这就是所谓的一物降一物吧好吧,这是一个二货小流氓和一个毒舌老正经的欢快故事。如果您喜欢郝冬冬今天好好做人了吗,别忘记分享给朋友...

每日热搜小说推荐