手机浏览器扫描二维码访问
1850年,英格兰国教会神父柯克曼在闲暇时间提出一个数学问题:“学校有15名女生,每天3人一组出去散步。要保证每周的7天内,任何两人都有一次同组的经历,但也只能有一次同组经历。请问如何办到?”,这就是柯克曼女生问题。
在现代数学家看来,这类问题最好的办法把他们看成超图——一堆三个节点或更多的节点组成的集合。15个女生就是节点,三人同组就看成这三个节点用三条线段(图论术语会说三条边)连接成的三角形。
柯克曼女生问题实际上就是问,有没有一种三角形的排列,把这些女生节点连接起来,并且,这些三角形还不能共边。共边意味着两个女生被同组安排了两次。题设要求的安排意味着女生们每周都能相聚一次,而每一天都是和新朋友一起散步。
柯克曼提出这个问题之后,近200年来,无数相关问题吸引和困扰着数学家。
1973年,传奇数学家埃尔德什提出了一个类似的问题。
他问能不能构造一个超图,这个超图拥有如下两个看似矛盾的性质。
性质一,任意两个节点都恰好被一个三角形包含,就和之前的女生一样。性质一要求了三角形要非常的密。
性质二要求三角形要以某种精确的方式铺得足够广(具体的说,就是任意拿出几个三角形,三角形占用的结点数要比三角形本身的数量至少多出三个)。
”这有点矛盾,这些物体的布局你既要求局部上稀疏,又要求整体上稠密。“加州理工学院的数学家康隆(DavidConlon)如是说道。
2022年1月,四位数学家通过一份长达50的论文,证明了只要节点足够多,总是可以构造这样的超图。伯明翰大学的数学家罗(AllanLo)说:“为了得到这个结果,他们用的办法的技术性程度令人惊叹。”康隆也说:“这是一个非常优秀的成果。”
研究团队建立了一个满足埃尔德什苛刻要求的系统方法,该系统方法从一个随机选择的三角形的开始,极其小心地设计以后续过程以满足他们的要求。“证明里那些复杂困难的分支情况的数量是非常惊人的。”康隆说。
他们的证明策略是从一个三角形开始,细致的构造这个超图。举个例子,你可以试想一下我们提到的15个女生,然后两两相连做线段。
我们需要从这些线段上描出我们需要的、满足条件的一堆三角形:
第一,任意两个三角形不共边。(满足这样条件的系统叫做施泰纳三元系)
第二,让每个三角形的子集占用足够多的节点。
数学家们对此有个通俗的类比。
现在假设我们不是在描三角形,而是在用乐高积木建造房屋。
你建造的前几个房子非常宏伟、坚固和精致。
你建好这些后,就把它们放在旁边备用。数学家把它们称为”吸收器“。
现在,用剩下的乐高积木继续随意的建造房屋。
当剩下的乐高积木越来越少的时候,你会发现一些散落的积木,和一些搭建不完善的房屋。
这个时候,你可以从吸收器上抽出几个积木块,用在不完善的建筑上。
因为吸收器非常的坚固,抽出一些积木不会导致严重的后果。
施泰纳三元系中,你的构造的房屋就是吸收器。
吸收器在这里就是精心挑选的线段(边)。
如果发现无法把剩余的三元组搭建成满足条件的三角形时,可以使用吸收器中的线段进行调整。当你做完这些调整后,吸收器本身也融入到了各个三角形之中。
吸收器的办法有时会遇到阻碍。
但是数学家们修补了这个问题,他们找到了一种新办法绕过这些阻碍。
比如,有一种叫做迭代吸收器的,它将线段划分成嵌套集合序列,于是每个吸收器都是会为下一级迭代服务。
”十多年来,进步巨大,“康隆说。”这已经是某种艺术形式,如果看成艺术,他们展示了一个非常高级的艺术。“
即便有了迭代吸收器,埃尔德什问题也依旧很难。”这就是问题没有得到解决的原因“,论文其中一个作者索尼(MehtaabSawhney)说。
比如,在迭代吸收的其他应用中,一旦你完成了一个集合的构建——无论是三角形、泰纳三元系,还是其他结构——你可以认为事情告一段落并扔在一边。然而,埃尔德什的条件要求让这四位数学家不能这样做。有问题的三角形很容易触及多个吸收器的节点。
“一个你在500步前选择的三角形,你需要以某种方式记住,并知道如何处理它,”索尼说。
这四个人最终发现,如果他们选择的三角形足够精细,他们就可以绕过每一个小问题。“最好的办法是考虑每个由100个三角形组成的子集,并保证以正确的可能性挑选三角形,”索尼说。
论文的作者们乐观地认为,他们的这个方法可以推广到别的问题。他们已经将他们的方法应用于一个关于拉丁方的问题——一个简化版的数独问题。
除此之外,还有几个问题最终可能被吸收器方法解决。“组合学中,尤其是在组合设计论中,随机过程是一个非常强大的工具。”其中一个也是关于拉丁方的问题叫做Ryser-Brualdi-Stein猜想,自1960年代以来一直没有解决。
智利大学的数学建模中心的副主任斯坦恩(MayaStein)说,虽然吸收器方法可能需要进一步发展才能解决这个问题,但自30年前方法建立以来,它已经走过了漫长的道路。“看到这些方法是如何进步和丰富起来,真是人生一大幸事。”
喜欢数学心请大家收藏:()数学心
神魔剑玄录 还是修仙吧 我在死亡副本当管理员 迷津蝴蝶 撩惹疯批顶E,笨蛋少爷他逃了 穿到虫族和军雌相亲 夸夸我的神探祖父穿越爹 死神不来了 上流假象 末世后我成了疯批alpha们的安抚剂 君为客 新搬来的邻居 攻略对象变成室友后,他不对劲 枭鸢 怪物崽崽和他的怪物监护人 杀了那个妖鬼 兽世养山君[种田] 小仓鼠今天有猫了吗 第三十年明月夜 我真没想在过去的年代当学霸
乖,给我。不要!这是原则问题!某吃货少女抱着一大堆零食誓死不从。他唇角带笑我做了二十八道菜。她冷静的上缴所有零食,嗲声嗲气亲爱的!你比零食重要!他是冷面的腹黑总裁,运筹帷幄决胜千里,但这都不重要!重要的是,他厨艺技能满点,追妻路上拿着锅铲遥遥领先。而把他改造成这样的小丫头采访中,她郑重其事我要吃一吨小龙虾!记者???跟谁说…如果您喜欢腹黑竹马小青梅,吃不够!,别忘记分享给朋友...
很小很小的时候,林塘就从亲在脸上的那些漂亮姐姐的口水中知道,英俊将会是自己此生最大的麻烦之源但是,作为一个志在世界冠军的男人,他眼里只有召唤师奖杯,他的战场也只在召唤师峡谷!女人只会影响我的操作!再多再漂亮的女粉丝,都无法令他多眨一下眼睛。然而竟然会有人为了追星,脑瘫到把整个俱乐部买下来我林塘就算从俱乐部楼顶跳下去!就算从此被封杀,再也上不了赛场!也绝对不会对你说一句软话!一年后不是我真香是她真的太香了如果您喜欢她真的太香了,别忘记分享给朋友...
叶健是一位普通的梦幻西游玩家,在穿越后,他发现原本的将军令竟然变成了一个神奇的U盘!打书炼妖资源鉴定,这些搏几率的玩意,担架还是逆袭统统由他说了算!晚秋半夏冥想…这些CC的万人主播,都将是他的跟班小弟!全订水友群582451872...
大计第一步,得找个金大腿,可没曾想抱错了,扎脸,可否重抱?为何她重新抱谁,谁就倒了八辈子血霉?好吧,她认,反正她有二宝。一,读心术,虽然,独独对卞惊寒失灵。二,缩骨术,虽然,让本是成人的她看起来像个小孩。在三王府众人的眼里,他们的王爷卞惊寒也有二宝。一,竖着走的聂弦音。二,横着走的聂弦音。有人问聂弦音,三王爷对你如此好,你要怎么报答他?聂弦音认真想了想我会把他当成我亲爹一样侍奉!直到那一日,有人当着他的面,跟她说,等她长大了娶她,她点头如捣蒜,卞惊寒便彻底撕破了脸,也撕了她的衣。她哭得惊天动地你禽兽,我还是个孩子。某男淡定穿衣,唇角一抹餍足微弧比本王小两岁,的确算个孩子。...
一名外科医生魂穿异世大陆,身怀血魔珠,成为人人得而诛之的天魔女,将来注定成为魔尊的人,救了六界第一美男的师父,得魔尊长老伏辰的倾心相待,更收获了凌王墨南枫的一世痴情。如果您喜欢这个王妃太魔性,别忘记分享给朋友...
习惯了当大爷的郝冬冬谁也不服,更别提当谁的小跟班,直到遇见谷庭西郝冬冬,你再逃课,期末别想及格。郝冬冬,带书过来,我给你答疑。郝冬冬,明天早上六点半,请把早餐放在我的办公桌上。郝冬冬,你属树懒的吗?跟上,再磨蹭民政局该下班了。对于这个男人,郝冬冬只想悲愤地说一个字喳!大概,这就是所谓的一物降一物吧好吧,这是一个二货小流氓和一个毒舌老正经的欢快故事。如果您喜欢郝冬冬今天好好做人了吗,别忘记分享给朋友...